PKA/AKAP/VR-1 module: A common link of Gs-mediated signaling to thermal hyperalgesia.

نویسندگان

  • Parvinder Kaur Rathee
  • Carsten Distler
  • Otilia Obreja
  • Winfried Neuhuber
  • Ging Kuo Wang
  • Sho-Ya Wang
  • Carla Nau
  • Michaela Kress
چکیده

Inflammatory mediators not only activate "pain-"sensing neurons, the nociceptors, to trigger acute pain sensations, more important, they increase nociceptor responsiveness to produce inflammatory hyperalgesia. For example, prostaglandins activate G(s)-protein-coupled receptors and initiate cAMP- and protein kinase A (PKA)-mediated processes. We demonstrate for the first time at the cellular level that heat-activated ionic currents were potentiated after exposure to the cAMP activator forskolin in rat nociceptive neurons. The potentiation was prevented in the presence of the selective PKA inhibitor PKI(14-22), suggesting PKA-mediated phosphorylation of the heat transducer protein. PKA regulatory subunits were found in close vicinity to the plasma membrane in these neurons, and PKA catalytic subunits only translocated to the cell periphery when activated. The translocation and the current potentiation were abolished in the presence of an A-kinase anchoring protein (AKAP) inhibitor. Similar current changes after PKA activation were obtained from human embryonic kidney 293t cells transfected with the wild-type heat transducer protein vanilloid receptor 1 (VR-1). The forskolin-induced current potentiation was greatly reduced in cells transfected with VR-1 mutants carrying point mutations at the predicted PKA phosphorylation sites. The heat transducer VR-1 is therefore suggested as the molecular target of PKA phosphorylation, and potentiation of current responses to heat depends on phosphorylation at predicted PKA consensus sites. Thus, the PKA/AKAP/VR-1 module presents as the molecular correlate of G(s)-mediated inflammatory hyperalgesia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study on the possible similar mechanism of ultra low dose-induced hyperalgesia and development of tolerance to analgesia in male rats: an study based on the role of Gs signaling pathway

Introduction: Ultra low dose (ULD) morphine induces hyperalgesia which is mediated by excitatory Gscoupled opioid receptors. This study was designed to investigate the development of tolerance to hyperalgesic effect of morphine. Also we attempt to seek possible similarity, in view of Gs proteins, between hyperalgesic effect of ULD and hyperalgesic effect after tolerance to HD. Method: Male ...

متن کامل

Fast Ca -Induced Potentiation of Heat-Activated Ionic Currents Requires cAMP/PKA Signaling and Functional AKAP Anchoring

Distler, C., P. K. Rathee, K. S. Lips, O. Obreja, W. Neuhuber, and M. Kress Fast Ca -induced potentiation of heat-activated ionic currents requires cAMP/PKA signaling and functional AKAP anchoring. J Neurophysiol 89: 2499–2505, 2003; 10.1152/jn.00713.2002. Calcium influx and the resulting increase in intracellular calcium concentration ([Ca ]i) can induce enhanced sensitivity to temperature inc...

متن کامل

Fast Ca2+-induced potentiation of heat-activated ionic currents requires cAMP/PKA signaling and functional AKAP anchoring.

Calcium influx and the resulting increase in intracellular calcium concentration ([Ca(2+)](i)) can induce enhanced sensitivity to temperature increases in nociceptive neurons. This sensitization accounts for heat hyperalgesia that is regularly observed following the activation of excitatory inward currents by pain-producing mediators. Here we show that rat sensory neurons express calcium-depend...

متن کامل

Cell-permeable peptide-based disruption of endogenous PKA-AKAP complexes: a tool for studying the molecular roles of AKAP-mediated PKA subcellular anchoring.

Stimulation of numerous G protein-coupled receptors leads to the elevation of intracellular concentrations of cAMP, which subsequently activates the PKA pathway. Specificity of the PKA signaling module is determined by a sophisticated subcellular targeting network that directs the spatiotemporal activation of the kinase. This specific compartmentalization mechanism occurs through high-affinity ...

متن کامل

PKA-type I selective constrained peptide disruptors of AKAP complexes.

A-Kinase Anchoring Proteins (AKAPs) coordinate complex signaling events by serving as spatiotemporal modulators of cAMP-dependent protein kinase activity in cells. Although AKAPs organize a plethora of diverse pathways, their cellular roles are often elusive due to the dynamic nature of these signaling complexes. AKAPs can interact with the type I or type II PKA holoenzymes by virtue of high-af...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 22 11  شماره 

صفحات  -

تاریخ انتشار 2002